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Crustacean copepods in high-latitude lakes frequently
alter their pigmentation facultatively to defend themselves
against prevailing threats, such as solar ultraviolet radiation
(UVR) and visually oriented predators. Strong seasonality
in those environments promotes phenotypic plasticity.
To date, no one has investigated whether low-latitude
copepods, experiencing continuous stress from UVR and
predation threats, exhibit similar inducible defences. We here
investigated the pigmentation levels of Bahamian ‘blue hole’
copepods, addressing this deficit. Examining several
populations varying in predation risk, we found the lowest
levels of pigmentation in the population experiencing the
highest predation pressure. In a laboratory experiment, we
found that, in contrast with our predictions, copepods from
these relatively constant environments did show some
changes in pigmentation subsequent to the removal of UVR;
however, exposure to water from different predation regimes
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induced minor and idiosyncratic pigmentation change. Our findings suggest that low-latitude

zooplankton in inland environments may exhibit reduced, but non-zero, levels of phenotypic
plasticity compared with their high-latitude counterparts.
ietypublishing.org/journal/rsos
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sci.6:190321
1. Introduction
All organismsareperpetuallyexposed to informationconveyingboth threats andopportunities [1,2], andeach
individual organism must act upon this information to maximize its opportunities while simultaneously
minimizing the risk from threats. In prey organisms, a common strategy to reduce risk in the face of
increasing threat from predators is to induce defence traits, such as specific behaviours, morphologies and
chemicals that reduce an individual’s vulnerability to predation [3,4]. Inducible defences are favoured
when there is temporal variability in predation pressure and when prey have reliable means of evaluating
predation risk [3], whereas temporally homogeneous environments should select for canalized phenotypes
[5], i.e. prey defence traits that are constitutive and locally adapted to the prevailing predation regime.
Furthermore, inducible defence traits should incur costs to the individual’s fitness which prevents them
from becoming constitutive defences, which are expressed even in the absence of the threat [6]. Despite
their ephemeral nature, plastic defensive traits have profound effects for both direct and indirect
interactions with other organisms, which make them both ecologically and evolutionarily influential [7].

In aquatic systems, zooplankton comprise a long-standing and valuable model for investigating
inducible defences [8–12]. They are amenable to laboratory experimentation and occupy an integral
position in aquatic food webs, filling the role of primary consumers as well as being an indispensable
prey source for most larval and many adult fish [13]. Zooplankton frequently induce modifications in
morphology, physiology and behaviour to gain protection from predators [9,12,14,15]. For example,
rotifers such as Keratella spp. can induce spine elongation when exposed to the predaceous rotifer
Asplanchna sp. [16] or decrease spine length when threatened with fish predators [17]. Cladocerans,
particularly in the genus Daphnia, boast a plethora of inducible defences: they form helmets, invest in
longer tail spines, induce diapause and alter swimming behaviours, all in response to predator cues
[6,9,18,19]. These predator cues, or kairomones, are detected through chemoreception which informs
the zooplankton of general rather than acute predation risks [20].

Threats do not only arise from the risk of predation, however. Solar ultraviolet radiation (UVR) is another
well-documented stressor for zooplankton, elicitingmultiple forms of inducible protection [8,14]. Copepods, a
common and important group of zooplankton, have demonstrated inducible defences in response to UVR
exposure [2,21]. A common strategy is to accumulate photoprotective compounds such as melanin,
mycosporine-like amino acids or carotenoids [22]. In environments where UVR is a substantial threat, such
as clear lakes which allow UVR to penetrate deeper [23], copepods have been shown to contain large
quantities of carotenoids, which confer protection from UVR through the neutralization of free radicals
[24,25]. In their free form or as bound lipids, carotenoids appear red or yellow [22]. This pigmentation can
make individuals more conspicuous targets for visually hunting predators such as fish [26]. Therefore, it
should be predicted that copepods in environments with fish predators will have lower levels of pigments
than nearby populations without visually hunting predators. Numerous studies—primarily at high latitudes
or in high-elevation lakes—have demonstrated that this trade-off exists and that copepods can rapidly adjust
pigmentation levels in response to changes in predation cues or UVR [2,14,21,26,27]. Due to seasonal
changes in these environments, there is a substantial variation in both UVR and predation levels across the
year, and this variation is a key feature for the promotion of phenotypic plasticity and inducible defences [3,28].

Multiple ecological and environmental differences between temperate and low-latitude systems can
influence the plasticity of pigmentation. Fish reproductive periods, for example, are more constrained
towards the poles as fish typically reproduce once annually, whereas fish in the subtropics are fractional
spawners resulting in a less variable predation regime analogous to the climatic variability hypothesis
[29,30]. Similarly, UVR in high-latitude environments is particularly stressful during summer, but the
threat is completely absent during winter months; in the subtropics, however, the threat of UVR is still
variable but never absent (figure 1). To our knowledge, no studies yet have investigated the plasticity of
pigmentation at lower latitudes.

Bahamian ‘blue holes’, which arewater-filled vertical caveswith a freshwater layer floating atopmarine
groundwater [31], represent a unique opportunity to investigate zooplankton pigmentation and the role of
phenotypic plasticity in the subtropics. They represent isolated, temporally stable environments that are
very simple with regard to the trophic webs as they only contain a small number of species [31].
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Figure 1. Estimation of surface irradiance of UV-B (300 nm) at a high-latitude location (Lund, Sweden; 55.71°N, 13.20°E) and a low-
latitude location near the focal study sites (Nassau, The Bahamas; 25.05°N, 77.40°W) across the year during 2017. Data computed
from the ‘FASTRT’ model V2.3 (https://fastrt.nilu.no) and computed as the first day of each month at noon with cloudless conditions.
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Importantly, as these blue holes were formed thousands of years ago, the zooplankton in these systems
have evolved with different apex predators: some blue holes have both piscivorous and
zooplanktivorous fish, others have only zooplanktivorous fish and a few lack vertebrate predators
altogether [31]. This range of stable predator regimes, coupled with the intense while still variable, year-
round UVR, allows us to make explicit predictions regarding the level of pigmentation expected in
copepods inhabiting environments with conflicting threats.

The objective of the present study was to identify whether low-latitude copepods show similar
phenotypic patterns to those from high latitudes when exposed to UVR and predation pressure. We
hypothesized that the high and more constant UVR exposure across the subtropics requires year-round
protection in all blue holes and, hence, by comparing blue holes that differ in fish assemblage, we could
test the hypothesis that copepods from environments with greater threats of predation from visually
hunting predators would have lower levels of photoprotective pigmentation. Specifically, we predicted
that zooplankton in environments with no predators should have the highest level of pigmentation,
those with only zooplanktivorous fish would have the lowest, and due to the reduced yet not absent
predation pressure, those with both zooplanktivorous and piscivorous fish would have an intermediate
level. Furthermore, in a laboratory experiment, we tested the prediction that low-latitude copepods,
unlike copepods from higher latitudes, will not exhibit phenotypic plasticity in pigmentation due to the
low temporal variation in predation intensity and the continual presence of UVR over the year, with any
phenotypic differences between populations instead representing constitutive defences.
2. Material and methods
2.1. Field sampling
Copepods were collected from three blue holes on Andros Island, The Bahamas, during March 2018. Blue
holes, although sharingmost characteristics, dovary inmany features such as surface area, freshwater depth
and turbidity. Therefore, we selected these blue holes a priori primarily based upon the presence/absence of
zooplanktivorous and piscivorous fish [31] while also considering the geographical proximity to one
another and the similarity of the UVR threat among blue holes (see electronic supplementary material).
Turtle Blue Hole (24°46021.7200N, 77°5105.47200W) has no fish, hereafter ‘no-predation’; Cousteau’s Blue
Hole (24°46033.600N, 77°54057.600W) harbours a population of a piscivorous fish species (bigmouth
sleeper, Gobiomorus dormitor) and a relatively low density of a zooplanktivorous fish (Bahamas
mosquitofish, Gambusia hubbsi), hereafter referred to as ‘low-predation’; and Rainbow Blue Hole
(24°470600N, 77°5103600W) has no piscivorous fish and a high density of G. hubbsi, hereafter ‘high-
predation’. We estimated the daytime predation risk of small aquatic prey in each blue hole by
quantifying the average number of bites towards possible prey by fish per minute per cubic metre

https://fastrt.nilu.no
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(see electronic supplementarymaterial). These estimates confirmed our expectation that RainbowBlueHole

experienced the highest predation risk, followed by Cousteau’s Blue Hole, and then Turtle Blue Holewhich
had no fish predators (electronic supplementarymaterial, table S1). To collect the copepods, we sampled the
entire freshwater layer of each blue hole by lowering a 100 µm net, with a mouth diameter of 30 cm, and
gently retrieving it. We collected a sample of concentrated zooplankton for immediate pigmentation
analysis and another sample for a laboratory experiment (see below). We found that no- and high-
predation systems contained only calanoid copepods and the low-predation system contained only
cyclopoid copepods. As we were interested in general patterns and both types of copepods exhibit
plasticity in pigmentation at higher latitudes [2], we included both in our laboratory experiment.

2.2. Experimental design
To test whether pigmentation in copepods at lower latitudes is a phenotypically plastic trait that responds to
changes in UVR and predation risk, we performed a laboratory experiment. To assess the influence of
predation risk, we employed a 3 × 3 factorial experimental design (3 populations × 3 treatments) with five
replicates each. Population represented the initial predation regime (no-, low- and high-predation risk) of
the population and treatments represented differences in perceived predation risk (chemical predator cues).
We devised our treatments using water from the three blue holes filtered through a 50 µm mesh to remove
other large zooplankton but keep both phytoplankton and the chemical cues from any potential predators.
We collected experimental animals using the methodology above, and all were collected on the same day
and brought to the laboratory where there was a 12 : 12 light : dark photoperiod with no exposure to UVR.
This absence of UVR allowed us to explicitly test whether the pigmentation of these copepods is plastic in
response to UVR as well as perceived predation risk. For each regime (no-, low- and high-predation risk,
respectively), we filled fifteen 300 ml containers with water collected in the field and again filtered through
a 50 µm mesh. We then took the zooplankton samples from the field and divided each population into
each container: five replicates of the no-predation risk system water, five replicates of the low-predation risk
system water and five replicates of the high-predation risk system water (45 total containers, 5 replicates per
population × treatment combination). This was achieved by gently mixing the field samples before taking a
200 ml subsample, thereby coarsely standardizing the number of animals, filtering the water away using
the 50 µm mesh and carefully introducing the zooplankton on the mesh to the treatment container.

The laboratory experiment was run for 10 days, as it has been shown that carotenoid content can adjust
to changed risk levels after only 4 days [21]. To maximize the predator cues, while simultaneously limiting
mechanical disturbance to the copepods, 100 ml of water from each container was exchanged every other
day. This was achieved by slowly filtering through a 50 µm mesh (to ensure that experimental
zooplankton were not lost) and replaced with 100 ml of filtered treatment water collected that same day
from the respective blue hole. This method also supplemented each container with fresh phytoplankton
and micro-zooplankton for both the herbivorous and omnivorous copepods. At the end of the
experimental period (10 days), each container was randomly selected, gently mixed and the water
filtered through a 50 µm mesh to collect the copepods. Only live adult copepods were photographed for
the quantification of pigmentation using the methodology described below.

2.3. Quantification of pigmentation
To quantify pigmentation, live copepods were gently transferred to an individual drop of glycerol on a
glass slide using forceps. To avoid any damage to the cephalosome (our area of interest, as to minimize
the risk of measuring the green gut material), animals were manipulated by their antennae. We then took
a digital photo of each copepod at 200× magnification using a Dino-Lite Edge X 200x (USB3) microscope
(AnMo Electronics Corporation, Taiwan) and the associated DinoXcope software. All copepods were
manipulated into the same position when taking photos, and light conditions were standardized by
taking the photos in a darkened room with only the focal light on the subject. To assess pigmentation
levels, the photos were subjected to a profile conversion in Adobe Photoshop CC 2017, following
Brüsin et al. [15]. Here, the colour profile is changed from RGB to Lab Colour, which is based upon
the standardized, device independent colour space, CIE (Commission International de l’Eclairage)
L*a*b*. Still in Photoshop, the ‘Quick Selection tool’ was used to select the cephalosome, and the mean
‘redness’ (a*) and ‘yellowness’ (b*) in that given selection were obtained from the in-built histograms.
The values for those colour channels range from 0, which appears as true green (a*) or true blue (b*)
to the human eye, to 255, which appears true red (a*) or true yellow (b*). Together, these two
attributes of colour have successfully been applied as proxies for carotenoid-based coloration [32,33].
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Figure 2. Mean copepod pigmentation levels (a* and b*) ± 2 s.e. among three Bahamian blue holes with different food chain
lengths and, therefore, predation risk ranging from no fish (no-predation risk, white bars), both zooplanktivorous and
piscivorous fish (low-predation risk, grey bars) and only zooplanktivorous fish (high-predation risk, black bars) (n = 6 per lake).
Horizontal lines represent the mean with the box denoting the 25th and 75th percentiles and the whiskers representing the
5th and 95th percentiles. Letters denote significant difference between populations (p < 0.05).
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2.4. Statistical analysis
All analyses were performed using R v. 3.4.3 [34]. To test for differences among the blue hole
populations, we conducted two separate ANOVAs using redness and yellowness values, respectively,
as dependent variables and employed the post hoc Tukey’s test to examine differences between
populations if the main effect was statistically significant (p < 0.05). To examine effects of population
and water source (i.e. predation cue) in the laboratory experiment, we calculated the change (Δ) in
pigmentation by subtracting the colour values of the zooplankton exposed to our treatments at the
end of the experiment from the average pre-experiment value of the population from which they
originated. We then performed separate linear mixed models using Δa* and Δb* values as dependent
variables with the package ‘lme4’ [35]. Treatment, population and their interaction served as fixed
effects, while replicate ID was entered as a random effect as five individuals were taken from each
container, yielding a sample size of 25 for each population × treatment combination.
3. Results
3.1. Population differentiation
Field-collected copepods exhibited clear differences in pigmentation between populations (a*: F2,15 = 19.24,
p < 0.0001; b*: F2,15 = 36.17, p < 0.001; figure 2). In accordance with our predictions, environments with only
zooplanktivorous fish (high predation) had the lowest levels of carotenoid pigmentation. This high-
predation regime exhibited lower levels of both redness and yellowness compared with those from the
fishless environment (Tukey’s tests: p = 0.003 and p < 0.001, respectively) or compared to those from the
low-predation system (Tukey’s tests: both p < 0.001). Unexpectedly, the cyclopoid copepods from the low-
predation system had similarly high levels of redness as the copepods from the no-predation system
(Tukey’s test, p = 0.143) and even greater levels of yellowness (Tukey’s test: p = 0.032).
3.2. Laboratory experiment
As UVR is continually present over the year at low latitudes, we expected little-to-no effects of UVR removal
across populations in the common garden environment. However, contrary to our expectations, we found



Table 1. Results from linear mixed-model analyses of changes in pigmentation, separately examined using redness (a*) and
yellowness (b*) colour variables, during the laboratory experiment. Significant results are italicized.

factor colour channel F statistic d.f. p-value

treatment a* 3.14 2,35.3 0.056

b* 4.60 2,32.5 0.017

population a* 654.21 2,35.3 <0.001

b* 1040.40 2,32.5 <0.001

treatment × population a* 1.12 4,35.3 0.362

b* 4.57 4,32.5 0.005
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Figure 3. Change in mean pigmentation levels (Δa* = redness and Δb* = yellowness) of copepods (n = 25 per treatment ×
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that the removal of the UVR threat resulted in clear changes in the pigmentation levels, albeit in different
directions in the different populations (table 1 and figure 3; electronic supplementary material, figure S1).
Regardless of the predation risk treatment, the no- and low-predation risk populations lost pigmentation
(in both redness and yellowness) in the absence of UVR, whereas the high-predation risk population
increased pigmentation. Second, we expected that due to the lack of temporal variation in predation
pressure, we would not find plasticity in response to differing predation risk chemical cues. Contrary to
our expectations, the introduction of water from alternative blue holes with contrasting predation regimes
had minor effects upon copepod pigmentation (table 1 and figure 3). The effects of the treatment on Δa*
were weak and marginally non-significant, although the treatment effects on Δb* were more pronounced
(table 1). Lastly, we investigated whether there was an interaction between population and the treatment
effects. We found no significant evidence for an interaction between treatment and population in Δa* but
we did for Δb* (table 1). This result appears to be driven by the zooplankton in the low-predation system,
which reduced their yellowness more when exposed to foreign water compared to water from their own
blue hole (figure 3).
4. Discussion
There is a pronounced bias in plankton plasticity research towards high latitudes and high elevations
where environmental conditions are highly seasonal and variable [11,21,24,26]. As such, it is unknown
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whether zooplankton from low latitudes (i.e. subtropics and tropics) exhibit plasticity in phenotypic

responses to divergent threats such as predation and UVR, as found in other systems. We postulated
that copepods in the subtropics would follow similar among-population phenotypic patterns in
pigmentation to those found at higher latitudes with respect to the prevailing threat, yet they would
represent constitutive defences due to invariable predation risk and consistently present solar UVR,
rather than the plastic responses so characteristic of copepods in higher latitudes [2]. Specifically, we
hypothesized that copepods from environments with no visually hunting predators would have
higher levels of photoprotective pigmentation than those exposed to fish. We also hypothesized that
when removed from UVR and exposed to water from different predation regimes, they would not
adaptively alter pigmentation according to the new threat regime.

Using the natural Bahamian blue hole system, we have been able to demonstrate that low-latitude
freshwater copepods do in fact display similar among-population pigmentation patterns compared to their
high-elevation and high-latitude counterparts [2,14]. That is to say, as predicted, calanoid copepods in an
environment with zooplanktivorous fish (high predation) had less redness and less yellowness than those
from the environment without visually hunting predators (no-predation). This finding is well aligned with
the available literature concerned with the trade-offs in pigmentation protection and the presence of
visually hunting predators, which suggests that the accumulation of carotenoid compounds appears to be
restricted to environments from which fish predators are absent [2,21]. Despite the difference in species
composition, we confirmed our prediction that the environment with both piscivorous and
zooplanktivorous fish (low-predation) would have a higher level of pigmentation than the high-predation
system due to reduced predation intensity through the predator effects on Gambusia hubbsi by Gobiomorus
dormitor. However, our prediction was not met regarding the difference between no- and low-predation
risk systems, which may be partly due to taxonomic differences of the copepod assemblage among blue
holes. The low-predation risk system was dominated by cyclopoid copepods, whereas the other systems
were dominated by calanoid copepods. Even if it is known that both cyclopoid and calanoid copepods
increase pigmentation when exposed to high UVR levels, it is possible that taxonomic differences may
affect pigmentation levels among these systems as it is known that even copepods from within the same
family show differences in the ability to sequester pigmentation [36]. Therefore, despite the fact that
cyclopoid and calanoid copepods have been shown to exhibit similar levels and seasonal variations in
pigmentation at higher latitudes [2], we cannot state whether the level of predation or the independent
evolution of calanoids and cyclopoids have led to the different levels of pigmentation observed here.
Increasing the number of investigated lakes with different trophic levels from one per treatment would
provide far clearer information on the relative importance of predation in pigmentation.

Having determined that there were phenotypic differences between differing species and predation
regimes, the next step was to investigate whether the populations exhibited pigmentation plasticity in
response to reduced UVR or changes in perceived predation risk. At higher latitudes, changes in UVR
and predation pressure have been repeatedly demonstrated to induce pigmentation changes in
copepods [2,21,22,24,26]. Copepods have also been shown to behaviourally respond to UVR and can
therefore clearly sense the presence of UV wavelengths [37]. In these higher latitude environments,
there are periods when UVR is absent and it is then beneficial to have low levels of carotenoids that
are costly to maintain. As such, we posited that pigmentation would not be a plastic trait in the lower
latitudes due to the constant presence of UVR year-round even though there is variability within the
year (figure 1). Despite our predictions, we found that pigmentation is a plastic trait in the low-
latitude blue hole systems.

The removal of UVR caused copepods from all populations to change their pigmentation. Copepods
from the no- and low-predation systems reduced pigmentation, similar to other UVR removal
experiments [27], whereas those from the high-predation system increased pigmentation levels
(figure 3). We assume that copepods in high-predation systems are exposed to a high and constant
threat of predation, and an adaptive behaviour in this environment towards both UVR and predation
could be to avoid the surface waters during the day via diel migration, as opposed to the reduction in
damage through carotenoid usage. Copepods are capable of detecting depth through the combination
of hydrographic and optical features [38]. Our experiment mimicked surface waters and prevented the
diel vertical migration behaviour that is possible in the blue hole system; therefore, the copepods may
have increased pigmentation to protect against the surface UVR regime they have evolved to expect
irrespective of predation, leading to the observed pattern. Furthermore, in the absence of
hydrodynamic disturbances caused by fish predators, copepods from the high-predation population
may have increased pigmentation in response to a perceived reduction in predation risk irrespective
of the water-cue treatment [39].
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In contrast with UVR conditions, changes in exposure to non-familiar predator cues had either no or

only a minor effect on copepod pigmentation. The change in redness in copepods treated with water from
the other populations was small (marginally non-significant treatment effects and no interaction effect),
corresponding to our initial prediction that there would be no plasticity. The water-cue treatment had,
however, a significant effect on yellowness, yet this appears to be driven by the low-predation
population dominated by cyclopoid copepods. Water cues only altered yellowness in the low-
predation system, where cyclopoid copepods exhibited reduced yellowness when exposed to water
from either a no-predation or high-predation environment. This neither follows adaptive predictions
nor our initial hypothesis. Carotenoids in copepods must be sequestered from the food source and
can appear as either red or yellow. Consequently, the low-predation risk system may have had a
phytoplankton composition with a higher proportion of ‘yellow’ carotenoid species, such as lutein
that is found in Prasinophyceae and Chlorophyceae [40], than in the other systems. If this was true,
however, it would be expected that the calanoid copepods from no- and high-predation systems
would also have higher levels of Δb* when exposed to low-predation treatment water. But, as this was
not the case, it appears that both pigmentation sequestering and the plasticity of this trait in this
system vary among taxonomic groups as found in other studies [15,36].

Our initial prediction was that the temporal consistency in predation pressure and the intensity of
UVR of the low-latitude blue holes would lead to canalized phenotypes. However, the clear and
pronounced changes in pigmentation when UVR threat was removed indicate that these copepods
have a pigment defence against UVR that is phenotypically plastic, not entirely constitutive. This may
be due to the annual variation in UVR also present in the subtropics (figure 1). Despite UVR being a
constant threat, i.e. never zero irradiance, like the winter months in the higher latitudes, the variation
present could still be sufficient to promote plasticity. Furthermore, changes in cloudiness may create
variable UVR conditions at a smaller temporal scale. As for plasticity in response to predation, we
found only minor and idiosyncratic responses, fitting our expectations based on the temporal
consistency in predation pressure in this system. It is possible that factors that promote and maintain
plasticity, other than temporal variation in predation threat, may explain the minor degree of plasticity
we observed here. For example, infrequent migration of copepods between blue holes that differ in
the predation regime may contribute to the evolution and maintenance of plasticity [41]. We believe
that our findings add to the mounting evidence that copepod plasticity is not as highly constrained at
lower latitudes as earlier thought [42]. Specifically, the pigmentation response to UVR across all
copepods is less constrained than previously thought, possibly due to the underestimation of the
variation in the environmental cue. Further studies should address the mechanisms maintaining
plasticity in low-latitude environments.

We conclude that zooplankton from different populations have differing pigmentation based upon
the prevailing threat combination. Calanoid copepod populations in Bahamas blue holes exhibited
pigmentation patterns matching predictions based on predation threat, similar to patterns previously
observed at higher latitudes. High-latitude zooplankton also show adaptive plasticity in pigmentation
in response to predator cues, while we here found that low-latitude calanoid copepods showed little
evidence of plasticity and cyclopoid copepods exhibited only minor plasticity inconsistent with
adaptive hypotheses.
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